Researchers used reductive etherification chemistry to convert alcohol and ketone substrates derived from microbial carboxylic acids into an ether bioblendstock for use when blended into conventional diesel fuel. The first-of-its-kind continuous catalytic process was designed to reduce production costs relative to batch chemistry, the prior state-of-the-art technology. When combined with the new fuel’s potential infrastructure compatibility and reduced greenhouse gas emissions relative to fossil diesel, it significantly reduces the risks inherent in introducing a new technology. More importantly, with the demand for diesel fuel rising, this fuel could help meet that need in a sustainable way.