In Ohio, chemists have been working to synthesize high-value materials from waste molecules for years. Now, an international collaboration of scientists is exploring ways to use electricity to streamline the process.
In their study, recently published in Nature Catalysis, researchers demonstrated that carbon dioxide, a greenhouse gas, can be converted into a type of liquid fuel called methanol in a highly efficient manner.
This process happened by taking cobalt phthalocyanine (CoPc) molecules and spreading them evenly on carbon nanotubes, graphene-like tubes that have unique electrical properties. On their surface was an electrolyte solution, which, by running an electrical current through it, allowed CoPc molecules to take electrons and use them to turn carbon dioxide into methanol.
Using a special method based on in-situ spectroscopy to visualize the chemical reaction, researchers for the first time saw those molecules convert themselves into either methanol or carbon monoxide, which is not the desired product. They found that which path the reaction takes is decided by the environment where the carbon dioxide molecule reacts
Tags: Ohio, waste molecules
Category: Research